lunes, 9 de septiembre de 2013

Trastorno de Insomnio Fatal


Si bien las encefalopatías espongiformes transmisibles, se consideraban encefalitis de origen viral por virus lentos, en la actualidad la literatura científica mantiene que están ocasionadas no por organismos conocidos tales como los virus y las bacterias, sino por un tipo de proteína llamado prión (sustancias de naturaleza proteica, que diferen de los virus y las bacterias en una serie de características: son difíciles de matar, no parecen contener ninguna información genética en forma de ácidos nucleicos, ADN o ARN y tiene generalmente un largo período de incubación antes de que aparezcan los síntomas). En algunos casos, el periodo de incubación puede ser de hasta 40 años.

Los priones se encuentran en condiciones normales en las células del organismo en una forma inocua, pero también pueden presentarse en una forma infecciosa y es entonces cuando ocasionan la enfermedad. Ambas formas de proteínas priónicas son muy similares, por los que los priones normales de una persona cambian espontáneamente a la forma infecciosa de la proteína y, luego, en una reacción en cadena se alteran los priones de otras células.

Una vez que aparecen, las proteínas anormales de los priones se unen y forman fibras o acumulaciones llamadas placas, que son visibles con microscopios potentes y que pueden comenzar a acumularse años antes de que empiecen a aparecer los síntomas de la enfermedad. No está claro que papel desempeñan las proteínas anormales de los priones ni en la aparición de la enfermedad ni en el desarrollo de sus manifestaciones clínicas.

Afecta a ambos sexos y suele aparecer en la edad adulta aunque se han descrito casos de aparición infantil y juvenil. Hasta la fecha hay identificadas en nuestro país unas veinte familias afectadas, procediendo muchas de ellas del país vasco.

La manifestación principal es el insomnio progresivo e intratable, el paciente es incapaz de conciliar el sueño, aunque quiere hacerlo, cierra los ojos e intenta adormecerse, las alucinaciones y las crisis respiratorias le devuelven a un estado de vigilia.

Las funciones cognitivas se van alterando irreversiblemente, con trastornos en la atención y la memoria, depresión y alteraciones de la conducta por lo que en épocas pasadas estos pacientes eran considerados dementes.

Se acompaña de un trastorno del sistema nervioso autónomo (parte del sistema nervioso responsable del control de una gran parte de funciones involuntarias y vitales para el organismo, tales como el control del ritmo cardíaco, la presión arterial, la sudoración y el control de los esfínteres) con hipertermia, sudoración, miosis (estrechamiento permanente con inmovilidad más o menos completa de la pupila, a consecuencia de un trastorno de la inervación del iris) y trastornos de los esfínteres. De forma progresiva van apareciendo alteraciones neuromusculares tales como hipotonía (tono anormalmente disminuido del músculo), debilidad y atrofia (disminución de volumen y peso de un órgano) de las extremidades, hiperreflexia (reacciones reflejas anormalmente elevadas), espasticidad (contracciones involuntarias persistentes de un músculo), alteraciones en los movimientos de grado variable: temblores, disartria (dificultad para articular palabras) y actividad muscular involuntaria, fundamentalmente mioclonías (contracciones musculares bruscas, breves e involuntarias, semejantes a las de un choque eléctrico, que afectan a músculos o grupos de músculos) y atetosis (trastorno neuromuscular caracterizado por movimientos de torsión lentos e involuntarios de las extremidades). También presentan alteraciones visuales que pueden llegar a ceguera completa.

miércoles, 4 de septiembre de 2013

Friedrich Nietzsche Más Allá del Bien y del Mal


“¿Cuántos siglos le hacen falta a un espíritu para ser comprendido?” Ha pasado uno desde la muerte de Nietzsche y no podría asegurarse todavía que la cultura occidental lo haya asimilado completamente: aquella transmutación de los valores que constituye el postulado más original de su filosofía –y que habría de materializarse en planos tan distintos como el estético, el científico, el religioso o el social- aún permanece inconclusa. El gran inconveniente en este caso es que la doctrina de Nietzsche no puede comprenderse si se la reduce a un simple discurso filosófico; su pensamiento es vital, y este hecho implica que su comprensión sólo es factible en el campo de la realización práctica.
Conforme al espíritu de la filosofía nietzscheana, intentaremos a continuación organizar el contenido de Más Allá del Bien y del Mal, ateniéndonos a un contraste sencillo, pero efectivo en términos de entendimiento: qué es lo que niega Nietzsche en esta obra, y qué es lo que afirma; todo en consonancia con este objetivo: “superar la moral; en un cierto sentido, superarse a sí misma la moral: esa sería la larga y misteriosa tarea, reservada a las conciencias más delicadas y más leales, pero también a las más perversas que hay hoy día, como a vivas piedras del toque del alma”.

Críticas y negaciones

El primer capítulo de este libro se titula Los Prejuicios de los Filósofos, en él cuestiona Nietzsche las razones que han llevado a los filósofos a buscar obstinadamente la verdad en todos los tiempos. ¿Cuál es el valor de esta voluntad?, se pregunta el autor y, sobre todo, ¿por qué motivo sacrificar la complejidad de la vida a este interés de descubrir en ella sólo lo verdadero? Nietzsche entiende que es justamente esta necedad el hecho que más ha influido en la creencia de que existe una oposición entre los valores, es decir, que todo lo relacionado con la verdad es bueno, mientras que todo lo que se halla lejos de ella, es malo.

La falsedad hace parte activa del mundo y habita en la raíz misma de la voluntad humana. Sin embargo, para los filósofos las falsaciones de la realidad son nocivas, afectan el control que puede tenerse de las cosas y, en consecuencia, deben evitarse. Lo que deduce Nietzsche de este asunto es que el conocimiento (ciencia y filosofía) no es otra cosa que la defensa de aquel prejuicio primario de considerar que lo único positivo es la verdad. En un mundo en el que la naturaleza supera cualquier deseo de comprensión, y en donde la objetividad es un discurso contradictorio, lo que debería proponerse no es una voluntad de verdad, sino una voluntad de poder, un libre arbitrio que elude los fines teleológicos y se concentra en los inmediatos.

Nadie comprenderá nunca enteramente lo que existe, como tampoco logrará saber lo que sepa distanciándose de sí mismo a través de una aparente objetividad. En cambio, sí podrá mandar a su antojo en aquello que encuentra en su vida, identificarse y utilizarlo, sin importar si coincide o no con una verdad universal. Un hombre que acomoda todos sus valores al deseo de verdad se auto-coacciona y encierra en el plano de lo dogmático, pues ya no podrá identificar la no-verdad con algo útil o positivo. Es una especie de traición a sí mismo, piensa Nietzsche, pues lo mejor es considerar que los valores constantemente están definiéndose en la vida, que son relativos, y que, más que con la verdad, tienen que ver con la voluntad de decisión.

Tres campos del conocimiento se han erigido en la historia como portadores de la verdad, imponiendo con tenacidad sus valores a los hombres: la ciencia, la filosofía y la religión. Cada uno de estos campos es examinado en distintas partes de su libro por Nietzsche, quien muestra que todos coinciden en actuar como una enfermedad progresiva, un virus que aniquila una por una las potencias del hombre, hasta convertirlo en su servidor ciego. Asimismo, aunque son producto de épocas concretas, desarrollan en sus discursos ideas universales (del hombre, del mundo, de la verdad) y, por ende, luego de que su forjador concreto, es decir, el filósofo, el científico o el religioso, mueren, continúan entendiéndose como absolutas. Este desfase es descrito por Francisco Gomá del siguiente modo:

“Nietzsche había dejado claro que los grupos humanos y las épocas históricas se determinan por sus respectivos sistemas de valores. Los hombres luego se olvidan de haber creado estas tablas de valores, las proyectan como válidas para siempre y se rigen por ellas. El dogmatismo de los valores es el resultado de este engaño. Según que la vida afectiva sea fuerte o débil, así serán los valores que hacen las veces de ideales orientadores” [3]

La ciencia. Toda ciencia es relativa pues se trata de una forma de simplificación del mundo; en este sentido, sus valores no deben postularse como universales y mucho menos defendérselos a ultranza. Durante un largo periodo de la historia humana, al que Nietzsche llama premoral, “se juzgaba del valor y del no-valor de un acto por sus consecuencias; el acto, por sí mismo, se tomaba tan escasamente en consideración como su origen”. Sólo con el advenimiento de otro periodo de la historia, el moral, aparecerá el imperativo “conócete a ti mismo”, bajo el cual las lógicas de la ciencia ampliarán su dominio.

Lo que se infiere de esto es que, en un primer momento, el conocimiento que sobre el mundo tuvo el ser humano era sustancialmente práctico, se refería de modo exclusivo al éxito o fracaso de sus acciones. La ciencia fomentó una nueva manera de entendimiento por la cual el hombre ya no esperaba al final de sus actos para examinarlos, sino que en su propio origen encontró teorías, principios e intenciones, fórmulas vinculadas con un objetivo de unificación del mundo basado en la verdad. El discurso científico indica desde entonces el camino para interpretar nuestra realidad, dejando a un lado la acción directa que fue característica de nuestro pasado.

La filosofía. Nietzsche asegura que “todos los filósofos se han imaginado en todos los tiempos haber fundamentado la moral, pero la moral, por sí misma, era considerada como una cosa ‘dada’”. El gran precio que se pagó por esta fundamentación fue el menosprecio de cualquier otra cosa: los instintos, la duda e, incluso, la voluntad han estado ausentes de la filosofía cuando no se acoplan, más o menos a las normas de la razón. Así, la verdad y la moral, en toda la historia del pensamiento, se hallan en la razón, y el hombre sabio buscará siempre acomodar lo mejor posible sus acciones a la razón, pues de este modo resultarán virtuosas.

Nietzsche califica como moral de rebaño esta insistencia en la adaptación y el amoldamiento; todo lo que podría ser glorioso en el hombre, especialmente, su voluntad, se reduce aquí a una cuestión de acomodo a la regla universal de la razón. Lo que antes era útil, ahora resulta perverso; en donde se vio alguna vez germinar el instinto, ahora se le ataca por improcedente. El filósofo, visto desde esta óptica, ya no toma riesgos en la vida, simplemente transita por el universo juzgando desde la seguridad de su razón cada acto; es un ser prudente, que no se arriesga; por tanto, está bien lejos de lo que desea Nietzsche:

“Enseñar al hombre que su porvenir es su voluntad, que es tarea de una voluntad humana preparar las grandes tentativas y los ensayos generales de disciplina y de educación, para poner fin a esta espantosa dominación del absurdo y del azar que se ha llamado, hasta el presente, ‘historia’; la falta de sentido de ‘las mayorías’ no es más que su última forma. Para realizar esto es preciso un día una nueva especie de filósofos y de jefes cuya imagen hará parecer sombríos y mezquinos todos los espíritus disimulados, terribles y benévolos que ha habido hasta el presente en la tierra” (Pág. 69)

Los filósofos no pertenecen a la clase de hombres que espera Nietzsche básicamente porque no hacen parte de la especie que manda, que tiene autoridad sobre sí misma. En toda la aplicación y paciencia que otros califican de virtudes, no ve el autor ninguna independencia, el honor que podría atribuirles una voluntad propia. Nietzsche plantea que el principio de la filosofía debe ser el escepticismo, no la búsqueda de la verdad, puesto que sólo el escepticismo “posesiona al individuo”, lo hace entrar en el terrero de su libertad, desatender inescrupulosamente las reglas, vivir sin fórmulas preconcebidas, y alejarse de la razón que estropea su voluntad primaria.

La religión. El último campo que contamina la posibilidad de un hombre libre y volente es la religión. En el capítulo El Espíritu Religioso, Nietzsche esboza las bases de un ateísmo centrado en el ataque a la naturaleza de la moral judeo-cristiana. En las primeras líneas escribe lo siguiente: “La fe cristiana es, desde su origen, un sacrificio: sacrificio de toda independencia, de toda fiereza, de toda libertad de espíritu, y al mismo tiempo servilismo, insulto a sí mismo, mutilación de sí mismo”. Como se ve, su señalamiento a la religión como dogma hace ver los principios que los creyentes defienden (fe, piedad, sacrificio) como modos serviles y autómatas.

Nietzsche considera que la raza alemana está menos dotada para el espíritu religioso que la de los países del Sur; su origen bárbaro la convierte en un terreno poco fértil para ello. Sin embargo, con preocupación observa que en Francia y en muchos lugares de Occidente la religión ha penetrado profundamente y ha impuesto su moral de rebaño, cuyas principales cualidades son la fe ciega, el dogmatismo metafísico, el alejamiento de lo vital y la baja estima. José María Valverde precisa lo siguiente:

La masacre de Ramree

masacre_ramreeHoy quiero recordar  el famoso diecinueve de febrero de 1945 y probablemente, estas sean las últimas palabras que escribo en este diario. Tras varios días bombardeando las costas de la isla que mis compañeros y yo estamos intentando defender, las tropas británicas junto a algunas brigadas indias han conseguido desembarcar en la zona norte.
Hemos resistido más de lo que lo hubiesen hecho los soldados de cualquier país y nuestra patria, Japón, nos recordará con orgullo por siempre. Tras el desembarco, y con la cobertura aérea y naval que tenían los británicos, todos los que quedábamos nos vimos obligados a replegarnos hacia el interior de la isla. Las comunicaciones por radio señalaban a nuestros mandos que nuestras brigadas de la zona sur todavía estaban intactas y resistían el asedio y las órdenes fueron claras y certeras; cruzar a cualquier precio los dieciséis kilómetros que nos separaban de ellos y unirnos para la batalla final.
Al anochecer, alrededor de mil soldados nos adentremos en los manglares poniéndonos a salvo de la artillería enemiga y de los disparos que, como una maldita lluvia de plomo, caía sobre nosotros desde la playa. A los pocos minutos, las explosiones y los disparos comenzaron a sonar sordos y alejados y un extraño silencio, tan solo roto por los jadeos extenuados de algunos compañeros, se adueño del oscuro y pantanoso bosque.En los meses que llevamos en esta isla nunca nos habíamos adentrado tanto en los manglares y los movimientos de una zona a otra siempre los habíamos hecho por las zonas secas de los laterales o por la costa. Todos éramos conscientes de los peligros de estos pantanos. Este bosque es el hogar de todo tipo de alimañas venenosas como serpientes, escorpiones y arañas de todo tipo y el peor de todos ellos, unas bestias que podían llegar a medir diez metros de largo y partirte en dos de una sola dentellada, los cocodrilos marinos.
Avanzar por este lugar es terriblemente costoso y los batallones que entraron al bosque más o menos agrupados no han tardado mucho en disgregarse en pequeños grupos. Doce compañeros y yo, caminamos a duras penas en fila india, con el agua por la cintura y en la más total oscuridad. Intermitentemente, el resplandor de algún proyectil disparado desde los buques que están fondeados a algunas millas, ilumina brevemente el cielo y nos permite guiarnos de un modo torpe y poco seguro. A cada paso, los pies se nos clavan en el fondo lodoso del pantanal y nos cuesta más esfuerzo avanzar.
Paralelamente a nuestro grupo, avanzan el resto. Algunos de ellos tienen pequeñas linternas con las que guiarse e intentamos no perder sus débiles destellos de vista como punto de orientación. De repente, a escasos metros de nosotros se escuchan unos terribles gritos y comienzan a sonar disparos. Entre la espesura de plantas y raíces altas podemos ver el resplandor rojizo de los fogonazos. Todos en el grupo nos quedamos paralizados y en silencio, preparando nuestros fusiles para el inminente ataque. ¿Cómo han podido rodearnos los ingleses tan rápido?…  Los disparos cesan tras un par de minutos y en su lugar comienzan a llegarnos unos sonidos extraños desde el mismo lugar, unos sonidos como de enormes chapoteos en el agua  mezclados con aterradores rugidos y cacofonías. De pronto, la misma escena se repite en otro grupo a unos treinta metros detrás de nosotros. Gritos histéricos rasgan el húmedo ambiente y el eco de los disparos a discreción rebotan por todo el bosque. Uno de mis  compañeros se desploma de golpe sobre mí, el desconcierto es total y cuando me ayudan a levantarlo comprobamos que ha recibido un balazo en la frente.
Tenemos que alejarnos de allí lo más rápido posible si no queremos acabar como él y recibir una bala pérdida de las que, sin todavía entender porqué, están comenzando a llegar desde todas las zonas del manglar. La locura se dispara en pocos minutos y los gritos y las explosiones se escuchan ya por todos los lados. El terror en nuestro grupo, casi de forma inconsciente, nos hace dirigirnos hacía el exterior del manglar incumpliendo las órdenes que nos han dado. Un terrible alarido destaca del resto gritando una palabra que llega con total nitidez hasta nuestros oídos que nos hiela la sangre al instante… ¡COCODRILOS!
cocodrilos_devoradores_humanosDe repente comprendemos que los ingleses no tienen nada que ver en lo que está sucediendo en el interior del manglar y que la lucha encarnizada que se está librando allí dentro es mucho más terrible. La zona que cruzamos ahora es más profunda y el agua nos llega hasta el pecho, a nuestra derecha, unas enormes sombras se deslizan hacia el agua desde lo alto de unos matorrales y antes de que nos dé tiempo a reaccionar, los dos últimos integrantes del grupo son literalmente engullidos hacia el fondo fangoso. El pánico se apodera del resto y también nosotros comenzamos a descargar nuestra munición hacia las sombras que se mueve bajo el agua, a nuestro alrededor. A unos veinte metros a nuestra derecha vemos una zona de pantano más clara y alta que parece tierra seca, si conseguimos llegar hasta allí quizás podamos salir de esta.
De reojo veo que Hiro, mi mejor compañero y que camina justo detrás de mí, está quitando el seguro a una granada y se dispone a lanzarla hacia atrás, donde los gigantescos cocodrilos están acabando sistemáticamente con los compañeros del grupo más rezagados. Cuando tiene el brazo completamente estirado para lanzar la granada, unas enormes mandíbulas emergen del fondo del lodazal y con un crujido estremecedor le arrancan de cuajo el brazo a mi amigo.
Hiro ha quedado tan estupefacto que ni tan siquiera grita o se queja por el dolor, observo durante unos segundos su mirada perdida en las oscuras aguas mientras que un chorro de sangre brota desde el boquete que ha quedado a la altura su hombro. De repente, la granada que se ha tragado el cocodrilo junto con el brazo de Hiro hace explosión y tras el fogonazo y el estruendo apagado bajo las aguas, una lluvia de barro, sangre y vísceras de cocodrilo cae sobre todos nosotros.  Agarrando a Hiro del único brazo que le queda y prácticamente a empellones conseguimos llegar hasta la zona seca. Tan solo quedamos cinco y si no conseguimos salir de allí, pronto seremos cuatro porque mi amigo se está desangrando a una velocidad aterradora.
Al fondo, entre lo poco que se filtra por la espesura de la vegetación, nos parece ver algo de claridad. Allí termina el manglar se sale a terreno abierto, a poca distancia de la playa oeste. Ahora que caminamos sobre terreno seco avanzamos más rápido y sin el temor de las bestias que nos acechan a nuestro paso desde las zonas húmedas de los laterales.
Por fin conseguimos fuera del bosque, ahora solo debemos de caminar bordeándolo hacia el sur hasta llegar hasta la zona donde están nuestros compañeros de la resistencia. Apenas hemos caminado un par de centenares de metros cuando desde la playa comienzan a dispararnos. Los silbidos de las balas pasan  a escasos centímetros de nosotros y antes de que nos dé tiempo a reaccionar, dos de nosotros reciben los impactos.
Los británicos han rodeado el manglar y los francotiradores tienen orden de disparar a todos los que intentemos salir de este infierno.
Volvemos de nuevo a introducirnos en la oscuridad del pantano, mientras arrastro literalmente a mi amigo, el tercer compañero dispara hacia la playa intentando cubrir nuestra retirada. Hiro y yo conseguimos llegar, pero él no tiene tanta suerte, un balazo le atraviesa el corazón en el último momento.

manglarEstoy completamente exhausto, he vuelto a introducirme en la zona húmeda hasta alcanzar una pequeña zona seca de un par de metros de diámetro con un enorme árbol en el centro. Sentados y apoyando nuestras espaldas contra el tronco, intentamos descansar unos minutos para volver a reemprender el camino. Hiro, lentamente se escora hasta que su cuerpo queda inerte apoyado contra mi hombro… ha muerto. Un reguero de sangre todavía corre desde su hombro, bajando por la pendiente de nuestro improvisado islote y adentrándose en el agua. A mi alrededor, decenas de lomos comienzan a emerger del agua, atraídos por la sangre de mi amigo y lentamente, se dirigen hacia mí.Esto ha sido un relato ficticio de unos hechos reales que acontecieron en la isla de Ramree, junto a Birmania, en febrero de 1945. La isla de Ramree, defendida por los japoneses,  tenía un puerto y un aeropuerto que eran un punto estratégico para la reconquista británica de la bahía de Hunter.
Los británicos no escatimaron en medios en la toma de esta isla; el acorazado Queen Elizabeth junto con los escuadrones de la RAAF del portaaviones Ameer, bombardearon sin compasión las costas de la isla antes del multitudinario desembarco  de las tropas británicas e indias. Alrededor de mil japoneses se vieron obligados a internarse en los manglares del interior sin posibilidad de huída, pues al salir se veían cazados por los soldados ingleses que flanquearon todo el pantano. Tan solo unos veinte soldados japoneses sobrevivieron aquella noche. No hay datos reales sobre lo que ocurrió allí, porque nadie entró jamás a hacer un recuento de víctimas, pero se supone que la inmensa mayoría de los soldados imperiales murieron bajo las fauces de estas terribles y gigantescas bestias. Otros muchos corrieron mejor suerte, muriendo por su propio fuego cruzado y otros, los menos, al intentar salir de allí fueron tiroteados por los británicos.
Todo lo que se sabe de aquella lejana noche de 1945, es lo que contaron los soldados británicos que escucharon estupefactos lo que ocurría en el interior del manglar. A día de hoy, no hay ningún testimonio directo de ninguno de los supuestos supervivientes japoneses.
El naturalista y miembro de las tropas británicas en ese momento, Bruce Wright, lo describió así:
matanza-de-ramree“Esa noche (la del 19 de Febrero de 1945) fue la más horrible que cualquiera de la dotación de la ML [lanchón de desembarco de la infantería de marina] haya visto nunca. Entre el esporádico sonido de los disparos podían oírse los gritos de los hombres heridos, aplastados en las fauces de los enormes reptiles, y el vago, inquietante y alarmante sonido de de los cocodrilos girando creaba una cacofonía infernal que rara vez se ha igualado en la Tierra. Al amanecer llegaron los buitres para limpiar lo que los cocodrilos habían dejado… entraron en los pantanos de Ramree, sólo unos 20 fueron encontrados con vida.”

Se dice que más de 1000 litros de sangre humana se derramaron aquella noche en los pantanosos manglares de la isla de Ramree y los hechos que allí sucedieron, están inscritos hoy en día en los anales de la historia como la mayor matanza de seres humanos provocada por animales.

.

domingo, 1 de septiembre de 2013

¿Teseracto?





Este término fue acuñado por primera vez en 1888 por el matemático inglés Charles Howard Hinton en una obra llamada A New Era of Thought, especie de manual que buscaba entrenar la intuición hiperespacial mediante ejercicios de visualización con cubos de colores en torno a un hipercubo imaginario.
En otras palabras, este hipercubo no es otra cosa que un cubo en cuatro dimensiones, ¿suena difícil de entender? Pues e la sección de Matemáticas de Harvard tienen una explicación sencilla que está acompañada de la imágen 
Lo que vemos aquí es una representación tridimencional -aunque está en dos dimensiones- de un objeto de cuatro dimensiones, para no confundirnos, este es un teseracto girando, tal como lo haríamos con un cubo cualquiera en nuestro limitado mundo tridimensional. Aunque dudo que alguien lo pueda explicar mejor que el mismísimo Carl Sagan. 


En geometría, un teseracto o hipercubo es una figura formada por dos cubos tridimensionales desplazados en un cuarto eje dimensional (llamemos al primero longitud, el segundo altura y el tercero profundidad). En un espacio tetradimensional, el teseracto es un cubo de cuatro dimensiones espaciales. Se compone de 8 celdas cúbicas, 24 caras cuadradas, 32 aristas y 16 vértices, esto tomando en cuenta el desarrollo del polinomio (x+2)^n donde el valor de n equivale al número de dimensiones (en este caso particular 4) y x es el largo, alto, ancho, etc., de la figura polidimensional equilátera.
Mitologia

¿Existió Norman Bates?



Corría el año 1960 cuando tuvo lugar el estreno de “Psicosis”, la obra de un director británico afincado en Estados Unidos donde se narraba la sobrecogedora peripecia de Norman Bates, un enfermo mental vinculado patológicamente a su madre y entregado a la práctica del asesinato múltiple. Aunque la película estaba dotada de un grado ciertamente notable de originalidad, no todo en ella era fruto de la imaginación. Norman Bates había existido.


No son pocos los que recuerdan el contenido a la vez sugestivo y enfermizo de la película “Psicosis” dirigida por el genial Alfred Hitchcock. En ella un joven y magistral Anthony Perkins daba vida a Norman Bates, un enfermo mental que, en apariencia, se limitaba a ser un edípico muchacho controlado por una posesiva madre. En la práctica, sin embargo, Norman era un asesino que, adoptando involuntariamente la personalidad de su difunta progenitora, causaba la muerte de aquellas mujeres a las que su madre nunca le hubiera permitido acercarse.
El retrato, poderoso y atrayente, que Hitchcock había trazado se basaba en hechos reales. 
la madre de norman
Norman Bates había ejercido su actividad delictiva hasta muy pocos años antes de la filmación de la película sólo que su nombre real había sido Edward Gein. La familia de Edward Gein parecía constituida con modelos paternos de aquellos que los manuales de psicología consideran más nocivos para un hijo. El padre era violento, alcohólico y se entregaba con frecuencia a maltratar de palabra y obra a su esposa e hijo. Por lo que se refiere a la madre, no estaba mucho más equilibrada mentalmente que su marido. Como tantas esposas insatisfechas en su matrimonio que vuelcan su afecto en los hijos, la señora Gein era absorbente, hiperprotectora, dominante y derramaba todas aquellas insanas características de su ser en su hijo Edward. 
     "  la madre   "         
Si éste fue alguna vez normal es difícil de saber. Sus recuerdos décadas después estaban plagados de escenas de discusiones y de palizas y de un episodio que le produjo una extraña e indeleble impresión. Éste no fue otro que el de la contemplación de un cerdo sacrificado cuya sangre goteaba parsimoniosamente sobre un cubo situado en el suelo de la cocina de casa. En aquella atmósfera de violencia paterna y de cuidados maternos excesivos creció un muchacho que no se atrevía a salir al exterior, en parte, porque le estaba vedado y, en parte, porque lo temía profundamente. Si todo aquel horror se daba en el seno de su hogar, ¿qué podía esperarle en un cosmos adverso y externo? Cuando murió su madre, Ed Gein tenía treinta y nueve años y ya era absolutamente incapaz de comprender el universo que lo rodeaba. Lo único que realmente llamaba su atención eran las mujeres pero sólo aquellas que guardaban algún parecido físico con su desaparecida y añorada madre.
Precisamente por eso, en cuanto sabía que alguna de ellas había fallecido, Ed acudía al cementerio y procedía a desenterrar clandestinamente el cadáver. Valiéndose del secreto que proporciona la noche, el muchacho arrastraba el cuerpo hasta su casa y allí procedía a desollarlo. Con la piel arrancada a la difunta, el joven se confeccionaba caretas —a veces, incluso trajes— con las que se cubría fingiendo ser una mujer que no era otra que su propia madre o quizá —como en la película— adoptando la identidad de ésta.
Semejante actividad muestra hasta qué punto Ed era un total desequilibrado pero, hasta cierto punto, su actividad con ser patológica e ilegal no resultaba dañina. En apariencia, no se hubiera permitido causar el menor perjuicio a un ser humano vivo. Así continuó la situación hasta que el índice de fallecimientos de la localidad resultó demasiado reducido para las necesidades de travestismo necrófilo que padecía Ed. Fue en ese momento cuando, arrastrado por su forma peculiar de trastorno mental, el joven decidió proceder al asesinato. La desaparición de dos mujeres con escaso margen de diferencia alertó a la policía local en el sentido de que no se trataba de delitos aislados sino de que, muy probablemente, tenían que vérselas con un asesino múltiple.
ed gein
Guiado más por su intuición que por indicios racionales, uno de los ayudantes del sheriff local decidió adentrarse en la casa de Ed —un edificio que recordaba considerablemente al que habita Norman Bates en la película “Psicosis”— y disipar las sospechas sobre su posible implicación en los crímenes. Una noche de 1954, el agente del orden público encontró en el sótano de la vivienda de Gein los restos de las dos desaparecidas. Sin embargo, el espanto no se limitaba a aquellos cadáveres. El desequilibrado mozo conservaba miembros de mujeres desenterradas en botes así como caretas de piel humana que solía ponerse para interpretar el papel de su posesiva madre. Examinado por los forenses competentes, Edward Gein fue objeto de un diagnóstico de psicosis y se recomendó su internamiento en un centro destinado al cuidado de enfermos mentales. No saldría de aquella institución en lo que le quedaba de vida. En 1984 falleció y, como singular tributo a la mujer que había marcado totalmente su vida, fue enterrado al lado de su madre. Allí ¿reposa? hasta el día de hoy.
ed gein



martes, 27 de agosto de 2013

jueves, 8 de agosto de 2013

Campos Electromagneticos y Salud Publica Ensayo


Desde que el hombre apareció en el planeta ha convivido con los campos magnéticos de la tierra y con los campos electromagnéticos provenientes del espacio exterior, los que probablemente tuvieron y tienen influencia sobre diversas funciones biológicas. Como resultado del avance tecnológico que conlleva a un aumento en el uso de la energía eléctrica, en este último siglo el ser humano está cada vez más expuesto a campos electromagnéticos (CEM) de frecuencia extremadamente baja particularmente de 50-60 Hz, similares a los producidos por el tendido eléctrico y una gran variedad de aparatos electrodomésticos. Por otra parte, las personas ocupacionalmente expuestas a campos magnéticos incluyen, entre otros, operadores de resonancia magnética, radar y radiofrecuencia, instalaciones de física especializada y biomédica, trabajadores de fundición eléctrica y procesos electrolíticos.
A finales de los años setenta aparecieron trabajos que sugerían la asociación entre CEM y cáncer, particularmente leucemia infantil (1). A partir de entonces se han llevado a cabo una gran cantidad de estudios, tanto epidemiológicos como de laboratorio, para tratar de establecer una posible relación entre la exposición a CEM y enfermedades del ser humano (2). En la presente revisión, se tratará de dar una aproximación al contexto actual sobre la controversia que se ha dado acerca del riesgo potencial que representa el estar sometido a la influencia de campos magnéticos y si esto podría llegar a convertirse en un problema de salud pública. Asimismo se presenta un resumen de la experiencia de siete años de trabajo en que hemos investigado el efecto biológico de los campos magnéticos.
Física de los Campos Electromagnéticos
Wood (3), señala que en los tiempos de Tales de Mileto (640 – 546 a. C.), el hombre hablaba de atracciones magnéticas. Desde hace más de dos mil años, los chinos utilizaron la brújula magnética para orientarse en sus viajes marítimos y por los desiertos de Mongolia. Como es sabido, el fundamento de la brújula es adoptar una orientación, la cual esta dada por un campo magnético periférico.
Ya en tiempos modernos, el físico danés Hans Christian Oersted, en 1820, observó que la orientación de la aguja de una brújula puede cambiar por la acción de una corriente eléctrica de forma semejante a como lo hacía un imán. Esto lo llevó a pensar que alrededor de un conductor de electrones se forma un campo que se manifiesta como un imán, siendo así como relacionó el magnetismo con la electricidad (4).
Un campo magnético se define como la región en el espacio en el que un objeto magnetizado puede, a su vez, magnetizar a otros cuerpos. De acuerdo a la distribución de su intensidad se pueden clasificar en:
Homogéneos: en donde la intensidad del campo es uniforme.
Heterogéneos: en donde la intensidad disminuye proporcionalmente con la distancia del centro.
Y de acuerdo a sí son constantes o variables en el tiempo se clasifican en:
Estáticos: las líneas de fuerza y su dirección son constantes en el tiempo.
Oscilantes: la carga se alterna en cada impulso a la vez que la intensidad también varía.
Tomando en cuenta ambos criterios de clasificación, el efecto de los campos magnéticos sobre los diversos sistemas biológicos dependerá de sí éste es homogéneo, heterogéneo, estático u oscilante (5).
Por otro lado, un campo eléctrico se origina por cargas eléctricas estáticas. Cuando el campo magnético y eléctrico en una región determinada varían en el tiempo, ambos se relacionan de tal manera que todo campo eléctrico que varíe con el tiempo, siempre va acompañado de un campo magnético también variable y viceversa, por lo tanto, el así llamado campo electromagnético, es resumido por Parker (6) como la interrelación entre campo eléctrico y magnético en una sola entidad física.
Según Stewart (7), en general para la transmisión de corriente alterna (A. C.), en Norteamérica, la frecuencia es de 60 Hertz (Hz) y para Europa y otras regiones, es de 50 Hz, entendiéndose por frecuencia el número de ciclos completos por unidad de tiempo. En el Sistema Internacional de Unidades 1 ciclo/1 seg. equivale a 1 Hz.
Por otra parte, en un campo magnético la fuerza esta dada por la densidad de flujo magnético (también llamada intensidad magnética), siendo esta el número de líneas de fuerza que pasan por unidad de área. La unidad en el sistema sexagesimal para la intensidad magnética es el Oersted (Oe) establecido en 1932 por acuerdo internacional, como sustituto de Gauss (G), aunque sigue utilizándose más éste ultimo en la literatura. Para el Sistema Internacional de Unidades la densidad de flujo magnético está dada en Teslas (T), en donde cada T equivale a 10,000 G (8).
A su vez, la intensidad de un campo magnético depende no solo de una variable eléctrica, sino además de la distancia, su magnitud se relaciona directamente con el flujo de corriente (medido en amperes) y es inversamente proporcional al cuadrado de la distancia. En forma similar, la magnitud del campo eléctrico está en proporción directa al voltaje y decrece conforme la distancia aumenta (9).
Efectos Biológicos de los Campos Magnéticos
Debido a su composición electrolítica los seres vivos son por lo general buenos conductores de la electricidad. A través de las membranas celulares y de los fluidos corporales intra y extracelulares existen corrientes iónicas, especialmente en las células nerviosas y musculares a las cuales debe estar asociado un campo magnético. Además, en los sistemas biológicos existen estructuras magnéticamente influenciables como los radicales libres que presentan propiedades paramagnéticas y aquellas en las que intervienen sustancias ferromagnéticas. La respuesta de un sistema biológico a un campo magnético externo depende tanto de las propiedades magnéticas intrínsecas del sistema como de las características del campo externo y de las propiedades del medio en el cual tiene lugar el fenómeno (10).
Experimentalmente se ha probado que en los cambios que sufren algunos parámetros de los sistemas biológicos por la acción de los campos magnéticos influyen no solamente la intensidad, sino también las características espaciales y temporales de dicho campo (11). Dentro de este contexto es diferente el efecto de un campo estático, que solamente produciría una rotación de los dipolos magnéticos tendiendo a orientarlos en la dirección del campo y restringiendo su movilidad , ocasionando así un efecto significativo si éstos participan en reacciones químicas. En contraste, un campo oscilante que presenta variaciones periódicas con el tiempo y que puede inducir movimientos sobrepuestos a la oscilación en los dipolos magnéticos moleculares, podría afectar la velocidad de las reacciones químicas dependiendo de la amplitud, frecuencia y sentido de las variaciones del campo magnético. En la literatura científica un gran número de trabajos prueban el efecto de los campos magnéticos sobre reacciones enzimáticas in vitro, dando efectos cualitativa y cuantitativamente diferentes dependiendo de la reacción que se trate y de las características del campo (12).
Por otra parte, en los seres vivos que se desplazan en el seno de un campo magnético como el terrestre, se induce una diferencia de potencial que puede alterar su motilidad. Aunque el campo geomagnético es relativamente débil, estos efectos han sido observados en elasmobranquios. Se sabe que los tiburones y rayas poseen mecanismos basados en la inducción electromagnética para orientarse y localizar a sus presas y que la intensidad del campo magnético puede ser un factor limitante en la capacidad de respuesta del sujeto. También se ha propuesto que las aves migratorias poseen un mecanismo de orientación para la navegación basado en la generación de potenciales eléctricos inducidos electromagnéticamente. Igualmente, se ha encontrado que algunos microorganismos, particularmente bacterias, tienen la propiedad de orientar su movimiento en respuesta a un campo magnético externo (magnetotactismo), estas bacterias contienen una o dos cadenas intracelulares ricas en partículas de fierro. Asimismo se han descrito propiedades de magnetosensibilidad para una gran diversidad de insectos migratorios y aún en el ser humano, aunque en éste último el hallazgo es controversial (13).
Por otra parte, las ondas de radio y algunos tipos de luz ultravioleta, son algunas radiaciones no ionizantes a las que el hombre está frecuentemente expuesto. Los efectos biológicos de las primeras están siendo determinados en la actualidad, mientras que el daño que produce la luz ultravioleta en el ADN se ha relacionado con la formación de dímeros de timina, que es la lesión más frecuentemente inducida por esta radiación, por lo general estos daños son eliminados por las células a través de mecanismos de reparación por escisión. Si las células expuestas no son eficientes en este tipo de reparación, el daño al ADN permanecerá y la célula sufrirá alteraciones considerables como en el caso del Xeroderma pigmentosum y del cáncer en la piel (14).
Por otro lado, radiaciones no ionizantes de frecuencia extremadamente baja como es el caso de los campos magnéticos de 60 Hz han mostrado tener efectos sobre los sistemas biológicos y se ha informado que éstos pueden afectar la velocidad de las reacciones y una gran cantidad de procesos bioquímicos. Asimismo, se ha informado que los CEM tienen efectos sobre la síntesis de ADN, ARN y proteínas, cambios en la producción de hormonas; modificación de la respuesta inmune y en el grado de crecimiento y diferenciación celular (15).
Adicionalmente se han obtenido evidencias experimentales que sugieren que los CEM afectan el crecimiento y proliferación en varios tipos de células. (16,17,18,19)
Desde el punto de vista físico, se ha demostrado que es el campo eléctrico inducido por el campo magnético variable el que determina la respuesta celular. Sin embargo, la influencia de un campo magnético estático añadida al campo variable, también ha quedado demostrada, por lo que el mecanismo de interacción es más complejo que la sola influencia de campos eléctricos inducidos. Se supone que la interacción principal ocurre en la membrana celular y más específicamente en los canales iónicos, siendo los del calcio los que participan más activamente en las alteraciones biológicas (20).
Se ha evaluado también el efecto de los campos eléctricos en embriones. En un estudio, se expusieron ratones C3H/He machos, a un campo eléctrico de 20 kV/m de 50 Hz de frecuencia por dos semanas. Después, cada ratón macho fue apareado con 2 hembras diferentes cada semana durante un período de 8 semanas para que las hembras fueran fecundadas por los ratones que habían sido expuestos al campo eléctrico y no se encontraron alteraciones en la sobrevivencia de los embriones (21).
En otro estudio Nordstrom y cols. (22) encontraron un incremento en la frecuencia de malformaciones congénitas en niños cuyos padres trabajaban en fuentes generadoras de alta tensión, lo cual podría indicar, efecto a nivel genético de los CEM.
Por otra parte, es bien sabido que los CEM pueden producir una variedad de efectos benéficos en los sistemas biológicos. Los campos magnéticos pulsantes por ejemplo, son usados para la reparación de fracturas óseas, Andrew y Basset (23), mostraron que el tejido óseo es sensible a campos magnéticos y eléctricos de baja frecuencia. Primero se sometió al tejido a un campo magnético variable de baja frecuencia y se detectó que en el tejido se inducía una corriente, ya que la lectura del voltímetro se modificaba en presencia de dicho campo. De este modo se inicio el estudio de la posible utilización de campos magnéticos para la terapia de fracturas persistentes y en algunos casos, de osteoporosis.
Campos Electromagnéticos y Cáncer
Recientemente se ha discutido la posible asociación de la exposición a CEM con el desarrollo de leucemia aguda y se ha propuesto una relación entre la forma de exposición al campo magnético en niños y adultos, sin embargo, no se han definido bien a estos agentes físicos como causantes de la enfermedad (24).
Asimismo, en varios estudios epidemiológicos se ha correlacionado la exposición de seres humanos a campos electromagnéticos con una alta incidencia de cáncer. (25,26,27,28,29)
En contraste, Costa y Hoffmann (30), descubrieron que campos magnéticos de alta intensidad, en el intervalo 1 a 50 T, con una frecuencia de 5 a 1000 KHz, reducen la concentración de células malignas en tejido animal. Por lo general para el tratamiento del cáncer, el tejido enfermo se somete de 1 a 1000 pulsos de 100 m seg a un segundo de duración dependiendo del tipo de tumor. El efecto de este tratamiento es la reducción en el número de células malignas; después se aplica la quimioterapia. La ventaja es que no se genera calor en el tejido y aunque el tejido normal también sufre alteración, el cambio es menor comparado con el efecto que tiene en las células cancerosas. En adición, las células del sistema inmunológico no se afectan con el tratamiento por lo que el efecto neto en el organismo es favorable.
Por otro lado, se han postulado teorías acerca de la posibilidad de carcinogénesis asociada con los CEM. Así, Fitzgerald (31), propuso un mecanismo para explicar la formación de un tumor debido a esta causa en el cual se tienen al menos dos etapas: 1) Etapa de iniciación, en la cual el ADN es dañado por un agente externo, produciendo ADN anormal y dando lugar a la expresión de proteínas anormales. Para la iniciación se requiere suficiente energía para romper los enlaces químicos del ADN (más de la que pueden proporcionar los CEM a los cuales estamos habitualmente expuestos). 2) Etapa de promoción, que es el período de latencia entre la exposición a un carcinógeno y la manifestación de cáncer. De acuerdo a lo anterior los CEM actuarían más bien como promotores que como iniciadores, ya que acelerarían el proceso de desarrollo de cáncer más que inducirlo directamente.
En un estudio experimental (32) se indujeron tumores mamarios en ratas utilizando el 7, 12 dimetilbenzantraceno (DMBA) a un grupo de 99 ratas hembras para luego exponer a campos magnéticos de 100 m T por 24 horas diarias durante 7 días; otro grupo de 99 ratas fue utilizado como testigo bajo las mismas condiciones ambientales que el grupo expuesto al tratamiento. Los resultados indicaron que las ratas tratadas con DMBA y expuestas por un largo período al campo magnético, manifestaron un crecimiento e incidencia de tumores mamarios malignos mayor que el del grupo no expuesto al campo magnético.
Por otro lado se ha observado que cuando se exponen cultivos de células cancerosas a campos magnéticos, se presentaba un aceleramiento significativo en el crecimiento celular, el cual continuaba a una tasa rápida aún después de la exposición al campo magnético. Asimismo, en ratas en las que se indujo la formación de tumores mamarios químicamente, se encontró que presentaban un grado mayor de crecimiento de tumor cuando se exponían a campos magnéticos de baja frecuencia (33)
Por otra parte, se ha sugerido que el riesgo de leucemia infantil puede estar relacionado con los efectos combinados de campos magnéticos estáticos y de campos magnéticos de frecuencia extremadamente baja(34). También en otro estudio (35), se ha sugerido que los CEM tienen relación con el cáncer, para esto, se incubaron cultivos de sangre periférica en presencia de un CEM de 5 mT y 50 Hz de frecuencia. Los resultados obtenidos indicaron que los efectos carcinogénicos originados por los CEM no son de tipo iniciador, pero probablemente tengan efectos promotores.
Efectos Genéticos de los Campos Electromagnéticos
No hay a la fecha un consenso general acerca del efecto genotóxico atribuído a la exposición a CEM de 60 Hz, sin embargo se han realizado diversos estudios que incluyen una diversidad de modelos biológicos, por ejemplo en una investigación se expuso a Salmonella typhimurium previamente tratada con azida (mutágeno químico) a un CEM de 2 Gauss y de 60 Hz de frecuencia, y se encontró un incremento de 14% en la tasa de mutación (36).
Por otro lado, Koana y cols. (37), estimaron los efectos genéticos de los campos magnéticos sobre la mosca de la fruta Drosophila melanogaster. Las larvas jóvenes tanto de genotipos normales y mutantes fueron expuestas a un campo magnético homogéneo de 0.6 T por 24 h, y luego fueron dejadas para continuar el desarrollo bajo condiciones de cultivo normal y finalmente emerger al estadío de pupa. Después de la eclosión los sobrevivientes fueron contados y se encontró que el número de adultos de genotipo mutante, aumentó aproximadamente un 8 % comparado con el grupo control, lo cual sugiere que el campo magnético estático provoca daño a nivel del DNA de células larvarias eliminando los homocigóticos recesivos.
En lo que respecta al efecto en cromosomas, Nordenson y cols. (38) expusieron células amnióticas de humano a un campo magnético sinusoidal de 30µT y de 50 Hz por espacio de 72 h y encontraron un incremento en la frecuencia de aberraciones cromosómicas comparado con un grupo no expuesto.
En contraste Galt y cols. (39) probaron el efecto de un CEM de 30µT de 50 Hz sobre células amnióticas humanas durante un período de exposición de tres días, con el fin de confirmar los experimentos realizados por Nordenson y colaboradores en los cuales el rompimiento de cromosomas y la formación de gaps era relativamente alta después de la exposición. Pero ellos no encontraron incremento de daño a los cromosomas en las células expuestas a campos electromagnéticos.
En un estudio relacionado a los anteriores, se encontró un incremento significativo de aberraciones cromosómicas cuando exponían cultivos de linfocitos periféricos de bovino a CEM de 50 Hz. También se observó un incremento en el número de aberraciones cromosómicas en células tumorales de ratón después de exponerlas a campos electrostáticos y también en linfocitos expuestos a microondas (40).
En otra investigación, se expusieron líneas celulares linfocíticas de pacientes con síndromes de inestabilidad cromosómica a campos magnéticos de 1-2 Gauss de 60 Hz, y no encontraron efecto en la frecuencia de intercambio de cromátidas hermanas y rompimiento de cromosomas (41).
Por otro lado, en otro trabajo se analizaron linfocitos humanos periféricos de 32 trabajadores ocupacionalmente expuestos a transformadores que generan campos magnéticos intensos por más de 20 años y no se encontraron cambios en la frecuencia de aberraciones cromosómicas ni del intercambio de cromátidas hermanas (42).
Además, en otro estudio relacionado, se expusieron linfocitos humanos in vitro a campos electromagnéticos de 2.5 mT. y los resultados obtenidos no demostraron efecto genotóxico ocasionado por los mismos (43).
Por otra parte Rosenthal y Obe (44), expusieron linfocitos humanos periféricos a CEM y encontraron que no alteraban la frecuencia espontánea de intercambio de cromátidas hermanas y aberraciones cromosómicas, pero cuando se sometían linfocitos previamente expuestos a mutágenos químicos a la acción de los CEM, se encontró una frecuencia de intercambio de cromátidas hermanas mayor qué cuando estaban en presencia del mutágeno químico, pero en ausencia del campo magnético, lo cual sugería un efecto sinérgico.
En otro trabajo se estudió el efecto in vitro de los campos electromagnéticos pulsantes de 10, 20 y 40 Gauss por 48 horas sobre linfocitos humanos periféricos, utilizando la prueba citogenética de intercambio de cromátidas hermanas y no encontraron diferencia estadísticamente significativa entre los grupos expuestos a CEM y el testigo (45).
Sin embargo Khalil y Qassem (46) expusieron linfocitos humanos a CEM de 1.05 mT y frecuencia de 50 Hz por 24, 48 y 72 h y encontraron disminuida la actividad mitótica y un alto índice de aberraciones cromosómicas.
Por otra parte, se realizaron exposiciones de linfocitos humanos a campos eléctricos (0.5,2.0,5.0 kV/m) de 50 Hz para ver si estos producían efecto genotóxico (estudiando la formación de micronúcleos) in vitro. Se encontró que los campos eléctricos de 50 Hz de frecuencia no producen efectos genotóxicos a nivel cromosómico (47).
En otro trabajo realizado en seres humanos, se determinó la frecuencia de aberraciones cromosómicas, intercambio de cromátidas hermanas, índice de replicación y micronúcleos en linfocitos periféricos de 27 muestras de trabajadores de fuentes de alta tensión, que tuvieron períodos prolongados de exposición a los CEM de 50 Hz y 27 muestras de trabajadores de la línea telefónica que servían como grupo de referencia. Lo que se obtuvo fue que no existían diferencias estadísticamente significativas entre los grupos en el análisis de intercambio de cromátidas hermanas, índice de replicación o formación de micronúcleos. Sin embargo, se observó un incremento con el rompimiento de cromosomas en los trabajadores de fuentes de alta tensión comparado con el grupo de referencia, por lo cual se sugiere que la exposición a CEM 50 Hz está asociada con un incremento en el rompimiento de cromátidas (48).
Evaluación del Potencial Genotóxico y Citotóxico de Campos Electromagnéticos de 60 Hz.
En años recientes, se ha trabajado en el laboratorio de Física de la Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo León, sobre un proyecto de largo alcance que tiene como propósito evaluar el riesgo genotóxico y/o citotóxico asociado con una exposición a CEM oscilantes de 60 Hz similares a los generados por el tendido eléctrico, sub-estaciones de distribución y en general por dispositivos que funcionan con electricidad de la red de corriente alterna y que circundan nuestro medio ambiente, en células de mamífero. Se midió la influencia de estos campos magnéticos en cultivos de Linfocitos humanos (49) a intensidades de 1.0, 1.5 y 2.0 mT y se observó un aumento en la proliferación celular, evaluado por el índice mitótico y proliferativo. Asimismo evaluamos el efecto de los CEM en células sanguíneas circulantes de ratón in vivo (50) y encontramos que los linfocitos disminuyen y los neutrófilos se incrementan en respuesta a un tratamiento magnético similar al utilizado para el caso de los linfocitos in vitro. También, se ha estudiado en nuestro laboratorio el efecto clastogénico en células de médula ósea de ratón in vivo y se encontró un aumento en la frecuencia de células micronucleadas, lo que es un indicador de rupturas cromosómicas, en animales tratados a las intensidades magnéticas antes mencionadas (51). Sin embargo, al estudiar los efectos de este factor físico sobre células germinales reproductoras de ratón in vivo, no se encontró efecto citotóxico o genotóxico al evaluar aberraciones en cromosomas meióticos y alteraciones morfológicas de células espermáticas (52). Recientemente se estudiaron los efectos agudos de 1.0 mT de CEM de 60 Hz sobre funciones ex vivo de macrófagos y linfocitos murinos y sobre crecimiento de células tumorales y no se detectó ningun cambio, en comparación con animales no tratados (53).
Conclusión
Basados en lo anteriormente mencionado, no se puede afirmar contundentemente que los campos electromagnéticos puedan considerarse un problema de salud pública generalizado, sin embargo, hay suficiente evidencia de que estos campos representan una forma de energía que conviene evitar. Recientemente se ha postulado que los campos magnéticos del medio ambiente juegan un papel importante en la alteración de la expresión génica lo que puede tener consecuencias negativas sobre la salud humana(54). También se ha dicho que la gran variabilidad y lo controversial de los resultados, se debe a que hay demasiadas variables involucradas y que no todos los experimentos se realizan con la rigurosidad necesaria (55).
Por otro lado, es evidente que a través del tiempo ha sido creciente la cantidad de agentes físicos y químicos a los que nos vemos expuestos como producto del desarrollo tecnológico e industrial, en consecuencia también ha aumentado el interés público por los posibles efectos negativos que para la salud pudiera tener la exposición a estos factores. Si bien, para una gran cantidad de éstos (pesticidas, metales pesados, radiaciones ionizantes, etc.) ya se han comprobado efectos adversos para la salud, existen otros agentes que son objeto de gran controversia debido a que sus efectos no han sido determinados con claridad, como anteriormente se indicó al respecto de la exposición de CEM de frecuencia extremadamente baja.
Los resultados de las investigaciones aquí presentadas, incluyendo nuestra propia experiencia, sugiere que los campos magnéticos son capaces de modificar actividades celulares, y que esto debe ser considerado en la estimación del riesgo potencial que representa una exposición laboral o ambiental a estos agentes físicos.
Resumen

En la presente revisión, se da una aproximación al contexto actual sobre la controversia que se ha dado acerca del riesgo potencial que representa el estar sometido a la influencia de campos magnéticos y si esto podría llegar a convertirse en un problema de salud pública. Los resultados de las investigaciones aquí presentadas, sugieren que los campos magnéticos son capaces de modificar actividades celulares, y que esto debe ser considerado en la estimación del riesgo potencial que representa una exposición laboral o ambiental a estos agentes físicos

Abstract
In the present revision, an approach to the present context occurs on the controversy that has occurred about the potential risk that represents being submissive the influence of magnetic fields and if this could get to become a problem of public health. The results of the investigations presented here, suggest them magnetic fields are able to modify cellular activities, and that this must be considered in the estimation of the potential risk that represents a labor or environmental exposition these physical agents

Key words:Electromagnetic field, Public health



Efectos Inmediatos del Tetrahidrocannabinol ( THC ) en el cerebro


Sonrie o...Muere ( un análisis instrospectivo a la crisis economica)

 El Pensamiento Positivo siempre es necesario?, el optimismo y  Estados Unidos y el colapso financiero de 2007 

Las Brújulas Vivientes, y la caida del escudo magnetico dela tierra

Los seres vivos hemos creado todo tipo de sistemas para orientarnos. Los seres humanos utilizamos nuestros sentidos, principalmente la vista y el oído. Algunos tipos de murciélagos son conocidos por su ecolocalización. La parte aérea de las plantas crece hacia la luz mientras que su raíz crece hacia el suelo. Hay muchos organismos unicelulares que saben moverse hacia donde detectan alguna sustancia beneficiosa, o alejarse de sustancias perjudiciales.
De todos los sistemas de orientación conocidos, uno de los más curiosos es el que descubrió Salvatore Bellini en el año 1963. Este investigador trabajaba con bacterias extraídas de sedimentos lacustres y vio que algunas bacterias se movían en líneas muy rectas, aparentemente hacia el norte magnético. Bellini comprobó que, aunque girara el microscopio, las bacterian viraban para continuar moviéndose hacia el norte. ¿Por qué hacia el norte? ¿Y cómo podía una bacteria saber dónde estaba el norte y dónde estaba el sur? Su descubrimiento no tuvo trascendencia hasta que, en 1975, Richard Blakemore hizo la misma observación en la bacteria Spirochaeta plicatilis. Blakemore publicó su descubrimiento en la revista Science, bautizando estas bacterias como bacterias magnetotácticas.
Una bacteria magnetotática es aquella que utiliza un campo magnético para orientarse. Normalmente este campo magnético es el de la misma Tierra. Esta habilidad para percibir el campo magnético le viene dada por la presencia de pequeñas partículas de magnéticas en su interior, que actúan como pequeñas brújulas. Estas partículas estan formadas de derivados del hierro (la magnetita y la greigita, sobre todo) y no son absorbidas del medio, sino que es la misma bacteria la que las cristaliza a partir del hierro simple (proceso llamado biomineralización). Estas partículas forman cadenas que se llaman magnetosomas, y pueden suponer hasta el 2% del peso total del organismo (en comparación, el hierro supone aproximadamente el 0.005% del peso de un ser humano). En la imagen que acompaña este artículo se ve un ejemplar deMagnetospirillum magneticum. El filamento oscuro en su interior es el magnetosoma.
¿Para qué le sirve a la bacteria poder “sentir” el campo magnético? Estas bacterias viven habitualmente en el sedimento del fondo de mares y lagos, a profundidades de hasta dos mil metros. Como a muchas bacterias que viven en este entorno, la presencia de elevadas cantidades de oxígeno les resulta tóxica. Así que, si notan que la cantidad de oxígen sube demasiado, empiezan a avanzar hacia el norte magnético (si están en el hemisferio norte), o hacia el sur magnético (si están en el hemisferio sur). Y aquí está la gracia de este sistema de orientación: como el camino hacia el polo magnético no es recto sinó que es un poco hacia abajo, al moverse se hunden y así se alejan del oxígeno que las perjudica. Hay algunas de estas bacterias que pueden nadar en los dos sentidos del eje magnético (hacia el norte o hacia el sur) según donde detecten que hay menos oxígeno. También se han descubierto recientemente bacterias magnetotácticas que nadan “al revés” (hacia el sur magnético si se encuentran en el hemisferio norte). La razón de este extraño comportamiento no es todavía muy conocida.
Se conocen especies de bacterias magnetotácticas en diferentes familias bacterianas. Las diferentes especies se distinguen entre sí por la forma y constitución de sus magnetosomas. Esto lleva a preguntarse cómo se desarrolló el magnetotactismo. Una teoría dice que el magnetotactismo pudo desarrollarse independientemente en las diferentes ramas del árbol filogenético bacteriano (un caso de convergencia evolutiva). Otra teoría hipotetiza que los genes encargados de la biomineralización pudieron haberse transferido entre bacterias de especies diferentes que compartían el mismo nicho ecológico (un mecanismo conocido como transferencia lateral de genes).
Además del interés biológico que tiene este sistema de orientación, los organismos magnetotácticos son útiles científicamente. La acumulación de hierro en su interior les da un papel importante en el ciclo marino del hierro y la presencia de estos organismos en grandes cantidades durante los últimos dos mil millones de años es en parte responsable del magnetismo residual que se ha detectado en sedimentos marinos fósiles (paleomagnetismo). De hecho, se han llegado a rescatar magnetosomas fosilizados, que han servido para estudiar cambios geológicos y climáticos. Pero sin duda los diez minutos de gloria de las bacterias magnetotácticas llegó en

1996, cuando un grupo de investigadores norteamericanos afirmaron haber encontrado magnetosomas en el meteorito de origen marciano ALH84001.
Estas bacterias tienen también aplicaciones biotecnológicas. Por ejemplo, son una fuente natural de partículas de magnetita microscópicas que tienen muchos usos en la industria (en especial en la industria nanotecnológica). Además, se ha descubierto que pueden modificarse para producir otros tipos de nanopartículas que normalmente no sintetizan los seres vivos (por ejemplo, la ferrita de cobalto). También se utilizan para detectar y aislar moléculas con propiedades magnéticas que serían difíciles de aislar en el laboratorio. Sin embargo, hay muchos aspectos desconocidos de la biología de estos organismos. Eso, junto al hecho de que la presencia de oxígeno les resulta tóxica, hace que sea difícil mantenerlos vivos en el laboratorio y limita actualmente su utilidad.
Fuente de la foto: MicrobeWiki.
NOTA: Este artículo es propiedad original del autor citado, aunque ha podido ser publicado anteriormente en otros medios, en cuyo caso aparecen descritos al final del mismo. En caso contrario o en notas de prensa el autor aparecerá como "Noticias de Internet"

libro "Las Lagrimas del tiempo" de Jose Garcia Bautista


Ediciones Absalón saca al mercado literario el libro"Las lágrimas del Tiempo” -bajo el sugerente y revelador subtítulo- El misterio de las grandes tragedias del Historia moderna, del investigador José Manuel García Bautista. El autor, a lo largo de su obra, nos desvela las principales catástrofes producidas en el siglo XX y en el XXI. Explicándonos las razones por las que se produjeron, haciéndonos un marco histórico en la época y desvelando circunstancias en torno a ellas que entran dentro del misterio y de lo inexplicado…José Manuel García Bautista, comienza su recorrido por la primera gran tragedia del siglo XX, por la explosión del Monte Pelée en el que el volcán de la Martinica dejó un recorrido de muerte y destrucción… ¿Por qué sucedió? ¿Qué hechos extraños hubo entorno a esta tragedia? Esas preguntas marcarán el inicio de esta obra donde el autor irá desgranando, poco a poco, circunstancias insospechadas que le dejarán sorprendido El investigador sevillano lleva coleccionando fenómenos inusuales en torno a catástrofes de todos los tiempos desde sus inicios en el mundo de la divulgación histórica o de misterio. Encontró curiosidades paranormales en torno a muchas de ellas y comprendió como, de alguna u otra forma, en todas se dan circunstancias inexplicables que hace que la tragedia cobre una nueva dimensión con los datos aportados en esta obra. Casuales o no, en todas ellas parece regir una pauta de premoniciones, sueños, visiones que la hacían presagiar o, tras ellas, la manifestación de fenómenos que se escapan a la razón y la Ciencia.
Un viaje fascinante desde la Martinica a principios del siglo XX hasta los últimos acontecimientos más catastróficos del siglo XXI, pasando por el Terremoto de San Francisco, la explosión de Tunguska, el hundimiento del Titanic o el Lusitania, la tragedia aérea más grave de todos los tiempos sucedida en Tenerife, la catástrofe nuclear de Chernobil, el 11-S e incluso visitaremos las profecías Mayas y esa fecha, ¿trágica?, de Diciembre de 2012. Sólo serán algunos de los viajes “en el Tiempo” que le propone el autor recorrer por esas lágrimas que fueron estas grandes tragedias.
L editorial acaba de poner a la venta en el mercado El Club Bielderbeg, de la periodista Cristina Martín, sobre las conocidas reuniones en clubs privados.
 link de descarga proximamente...